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Abstract

Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are inves-
tigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite
Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element
hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that
flows over Utah’s western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of
the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate
scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u
spectra around ky = 1. The presence of a k™! slope in the spectra is also found to correlate with the Reynolds number dependence in the
peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent

intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling.
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1. Introduction

The canonical turbulent boundary layer (TBL) is of fun-
damental interest because it provides a basis for under-
standing more complicated flows. Almost all practical
applications involving TBLs are characterized by high Rey-
nolds numbers, including, for example, airfoils and sub-
marine hulls. Due to limitations in computational and
experimental resources, most numerical and laboratory
model studies are conducted at much low Reynolds num-
bers. Results from these model studies can only be effec-
tively extrapolated to higher, more practical Reynolds
numbers, if the appropriate TBL scaling parameters and
relations are known. Currently, such scaling behaviors
remain largely indeterminate, for both canonical and non-
canonical TBLs.

* Tel.: +1 801 581 5032; fax: +1 801 585 0039.
E-mail address: m.metzger@utah.edu

0142-727X/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ijheatfluidflow.2006.02.021

The present study aims to address this issue by probing a
naturally high Reynolds number turbulent boundary,
namely the atmospheric boundary layer (ABL), and com-
paring to laboratory data obtained at much lower Rey-
nolds numbers. In both cases, good spatiotemporal
resolution of the measurement technique is maintained to
avoid contamination of the results by spatial averaging,
which tends to mask true Reynolds number effects, see
Metzger and Klewicki (2001) for further discussion. The
unique aspects of the present study, i.e., the good spatial
resolution over a sufficiently large Reynolds number range
(three orders of magnitude), therefore, are significant with
respect to ascertaining potential scaling relations.

2. Experimental set-up

Hot-wire anemometry experiments were performed at
the surface layer turbulence and environmental science test
(SLTEST) facility on the salt playa of Utah’s western
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desert under conditions of near-neutral thermal stability.
The SLTEST site is particularly suitable for high Reynolds
number (based on momentum thickness, Ry~ 5x 10°)
canonical TBL studies due to the sparsity of vegetation,
the smooth flat surface (aerodynamic roughness length,
zo~ 0.5 mm), and the relatively predictable diurnal wind
patterns resident in the early summer. Attributes of the site
are described in further detail by Metzger (2002). In the
present study, a tower of 20 simultaneously sampled hot-
wires (shown in Fig. 1) was used to interrogate the turbu-
lent axial velocity in the near-surface region spanning
5< y+ < 10*, where y denotes the distance from the sur-
face. Note, the superscript + indicates inner normali-
zation by kinematic viscosity, v, and friction velocity,
u.(= \/tw/p), where 1, and p denote the wall shear stress
and air density, respectively. Because of inherent temporal
variations in the atmosphere, simultaneous data are needed
to clarify trends in the statistical profiles. Therefore, the
tower of simultaneously sampled velocity measurements
represents an essential feature of the present study over
previous studies.

The present hot-wire data are accompanied by coinci-
dent meteorological data, including three-dimensional
velocity from sonic anemometers located at 2, 3, and 5 m
above the surface, direct surface shear stress from a float-

Fig. 1. Photograph of the hot-wire experiment at the SLTEST site in
Utah’s western desert. Twenty hot-wires are spaced nearly logarithmically,
spanning an overall distance of 1 m above the surface.

ing-element drag plate, mean velocity profiles up to
150 m from a minisodar, net surface radiation, and surface
temperature gradient measurements. In order to deduce
Reynolds number effects on the structure of the TBL, the
present atmospheric results are compared with wind tunnel
data acquired in the range 2500 < Ry < 5X 103, In all
cases, the inner normalized wire length is less than 10,
yielding good spatial resolution over three orders of magni-
tude in Reynolds number.

3. Challenges with atmospheric boundary layer
experiments

The challenges of performing hot-wire experiments in
the atmospheric surface layer are multifaceted. On a prac-
tical level, field trials are physically demanding and require
special facilities for on-site hot-wire calibration, which
must be performed frequently. Calibration algorithms must
also explicitly incorporate temperature compensation
(Metzger and Klewicki, 2003) since ambient air tempera-
ture changes dramatically over the course of the day. Since
hot-wire probes are directionally sensitive, i.e., data may
become contaminated by substantial crosswinds, care must
be taken to constantly align the probes with the mean wind
direction. In addition, field trials can be costly and risky, in
the sense that the potential for instrumentation and sensor
damage, due to, for example, environmental factors such as
dust and high speed winds, are much greater than typical
laboratory studies.

On a more technical level, the ABL differs from the
canonical laboratory generated boundary layer, aside
from the Reynolds number difference, in two important
ways: (i) the ABL is not statistically stationary and (ii)
the ABL is thermally stratified. The former poses chal-
lenges in determining the appropriate averaging time to
use in calculating the vertical momentum flux, for exam-
ple, which is typically used in atmospheric studies to esti-
mate the local friction velocity. A method of determining
a critical averaging time for computing atmospheric fluxes
has recently been proposed (Holmes and Metzger, 2005)
and may prove helpful in this regard. The second differ-
ence results from the diurnal heating and cooling of the
Earth’s surface, which leads to the inherent thermal strat-
ification of the atmosphere. During the transitions
between heating and cooling (sunrise and sunset), the
atmospheric boundary layer passes through neutral stabil-
ity whereby boundary layer turbulence is driven predomi-
nantly via mechanical shear, with buoyancy effects being
negligible. Therefore, in order to make direct comparisons
between ABL data and wind tunnel measurements, only
field data acquired during conditions of near-neutral ther-
mal stability are considered. This poses definite challenges
with respect to measuring the thermal stability and per-
forming thorough checks on data quality to ensure that
thermal effects are not influencing observed trends in the
results. Work in progress by the author aims to address
this issue, as well.
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4. Axial velocity results
4.1. Statistical profiles

Fig. 2 presents the inner normalized mean axial velocity
profiles from several atmospheric studies, including that of
Metzger and Klewicki (2001), Metzger et al. (2001), and
Folz (1997). All data exhibit a logarithmic region with a
slope similar to that observed at lower Ry. Log laws derived
using parameters from Coles (1969) and Osterlund et al.
(2000) are shown for comparison. The present study only
considers data where the surface may be considered rela-
tively smooth, i.e., in terms of the inner normalized equiv-
alent sand grain roughness, k| < 25.

Two factors play into the variability of k] at the
SLTEST site. Atmospheric data during neutral stability
indicate that, for a given surface condition, the friction
velocity varies linearly with the mean wind speed at a
height of about 2m above the surface, u, o< Usp,, (see
Metzger (2002) for further details). Thus, for a fixed ks,
as the mean wind speed increases, &, increases proportion-
ally. In addition, over the course of the summer, the integ-
rity of the desert surface degrades due to moisture
depletion, causing a noticeable increase in the dimensional
surface roughness by late summer. The former effect dom-
inated in the 2003 data, shown in Fig. 2, which represents a
composite of hot-wire, sonic anemometer, and minisodar
measurements. As evident by the data, the surface condi-
tion affects the mean wind profile through the entire depth
of the surface layer, estimated to be 6"~ 8.5x 10°, the
location at which the mean profile begins to deviate from
the log law.

The inner normalized root mean square (rms) axial
velocity profiles presented in Fig. 3, on the other hand,
reveal distinct Reynolds number trends. Compared are
the data of Metzger and Klewicki (2001), Folz (1997),
DeGraaff and Eaton (2000), and Klewicki and Falco
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Fig. 2. Inner normalized mean axial velocity profile from atmospheric
data obtained at SLTEST. The set of grey lines indicates the expected log
law for different surface roughness, as parameterized by k.
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Fig. 3. Root mean square axial velocity profiles as a function of Reynolds
number. Inner normalization (top) and mixed scaling (bottom). The
arrows indicate the direction of increasing Reynolds number. The black
solid and open grey symbols are from DeGraaff and Eaton (2000) and
Klewicki and Falco (1990), respectively. All other symbols represent
atmospheric data acquired at the SLTEST site.

(1990), along with the prediction based on the scaling rela-
tion of Marusic et al. (1997). Of particular interest is under-
standing the proper scaling relation valid near the peak at
y* = 15, since this corresponds, at least from low Reynolds
number data, to the peak in the turbulent kinetic energy
production. Renormalization using the mixed velocity scale
of DeGraaff and Eaton (2000), i.e., /u.U,, appears to
remove the observed Reynolds number trend near the peak
at " = 15. Interestingly, the mixed velocity scale repre-
sents the geometric mean between the smallest and largest
velocity scales in the flow, and as such characterizes an
intermediate velocity scale. Note, both a substantial Rey-
nolds number range and sufficient spatial resolution are
required to observe the Reynolds number behavior in
Fig. 3. The present data are inconclusive, however, regard-
ing a potential secondary peak near y* =550 at Ry~ 5 x
10%. Work in progress by the author aims to address this
issue, as well as investigate possible scaling relations for
the region of the profile between 40 <y <0.15". Note,
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the previous work of DeGraaff and Eaton (2000) showed
that outer scaling is appropriate for y* > 0.15".

4.2. Further support for mixed scaling near the peak

Mixed scaling of u’ near the peak at y© = 15 implies

ul

max — (/W7 1
WU (1)
where C is a constant, independent of Ry. Based on the
data presented in Fig. 3, C = 0.57. Rearranging (1) yields

b\ 12
() @)

On the other hand, a compilation of the current literature
(see Metzger and Klewicki, 2001) suggests that

Upax = A 10g(Ry) + B, (3)

max

where A = 0.22-0.29 and B = 1.84-2.02 are empirical con-
stants derived from a curve fit to the available data.' In or-
der for both (2) and (3) to be valid concurrently, it is clear
that the following must hold:

~1/2
<qu ) = a; log(Ry) + aa, (4)
where a; = A/C =0.39-0.51 and a, = B/C = 3.22-3.54.

The quantity on the left hand side of (4) is relatively easy
to measure in the Superpipe, since u, may be determined by
the pressure drop along the pipe and U, is simply the cen-
terline velocity. The momentum deficit thickness, 6, is
obtained by integrating the mean velocity profile across
the boundary layer. Relatively minor uncertainties in the
estimate of 0 exist due to limitations in the measurement
technique very near the pipe wall. Fig. 4 shows (U;)l/ 2
as a function of Reynolds number based on data from
the study of McKeon et al. (2004). A curve fit through
the data produces the following relation:

-1/2
((’; ) = 0.48log(Ry) + 3.27. (5)
The empirical coefficients in (5) fall directly within the
range of a; and a, given above for (4).

Although the Superpipe data in Fig. 4 appear to exhibit
a slight curvature when plotted semilogarithmically versus
Ry, the relation in (5) represents a very good first-order
approximation. In this manner, the present analysis of
Superpipe data provides strong independent support for
the mixed scaling of u’ near the peak. It does not, however,
answer the question why U, is an important velocity scale
so close to the wall. Metzger and Klewicki (2001) showed
that an increased contribution from low frequency motions
at high Reynolds number underlies the observed rise in the

' An essential part of the analysis by Metzger and Klewicki (2001) is that
only high resolution data, with sensor lengths less than or equal to 10
viscous units, were used in the curve fit.
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Fig. 4. Reynolds number dependence of the intermediate velocity scale, as
based on Superpipe data of McKeon et al. (2004).

peak of «'" near y" = 15. This supposed modulation of u’
by the freestream, becoming more pronounced with
increasing Reynolds number, was anticipated by Bradshaw
(1967). Nevertheless, a physical or mechanistic justification
for this remains to be determined.

4.3. Spectra

En route to addressing the question put forward at the
end of the previous section, it is helpful to investigate the
spectra of u in some detail. Of particular interest is under-
standing the predominant time scales of the turbulent
motions contributing to the overall axial velocity variance,
and how these contributions vary with both distance from
the surface and Reynolds number. Fig. 5 compares the
premultiplied spectra of u at y* ~ 15 for Reynolds numbers

—R, =5x10°
25
R, =2.5x10°

0.5

f+

Fig. 5. Comparison of premultiplied spectra at y*© = 15 for high and low
Ry. The dotted lines mark the approximate locations of the inverse Taylor
and integral time scales for each data set. The black dashed line indicates a
slope of —1, as would appear in the non-premultiplied spectra.



538 M. Metzger | Int. J. Heat and Fluid Flow 27 (2006) 534-541

Ry =5x10°(SLTEST) and R, = 2500 (wind tunnel). Spec-
tra are normalized such that the area under the curve is
equal to the variance. Clearly, the high Reynolds number
data exhibit an extended region with a —1 slope; while
the low Reynolds number data show a much narrower fre-
quency band with —1 slope. This is consistent with the
result regarding the logarithmic Reynolds number depen-
dence of the peak in «'" at y" ~ 15, as described below.

4.3.1. Ramifications of a —1 slope
From the definition of the spectra,

u? = /0Oc &, df. (6)

As apparent in Fig. 5, the predominant energy containing
region of the spectra lies within the frequency band having
a —1 slope, especially so at higher Reynolds number.
Therefore, integrating the spectra over this frequency band
yields a good estimate of the overall variance of u, i.e.,

-1

ey, )

!

where /1, and T mark the approximate lower and upper
bounds of the —1 slope region, as indicated by the dotted
lines in Fig. 5. Physically, 4, and T represent the Taylor
microscale and integral time scales, respectively, which pro-
vide a measure of the characteristic intermediate and lon-
gest time scales in the flow. Performing the integration
gives

£ = log(T") — log(i;"). )
or
u”? =log (%) 9)

The ratio of the time scales may be related to the Reynolds
number (Tennekes and Lumley, 1972) yielding

u”? oc log(Ry). (10)

The statement in (10) agrees qualitatively with the observa-
tion expressed by (3). This gives some physical justification
tying the Reynolds number dependence in the peak of u'"
to an extended region of —1 slope in the corresponding
spectra that increases logarithmically with increasing Rj.
A similar connection was made in the work of Perry and
Abell (1977). The basis for that connection, however, stems
from the attached-eddy hypothesis of Townsend (1976) va-
lid in the overlap region, y* > 100 and y/d <0.1, and is
much different than the observations made in the present
study of a k! slope in the near-wall region (y* < 100).

4.3.2. Distance from the wall effect

Scaling of the spectra at y* values further from the sur-
face, relative to the peak in u'", were investigated to deter-
mine the extent of the —1 slope region for y* > 15. Fig. 6
shows the premultiplied spectra of the axial velocity at
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Fig. 6. Spectra of the axial velocity as a function of distance from the
surface at Ry~ 5x 10°. Normalization with distance from the surface
(top) and inner normalization (bottom). The dashed arrow indicates the
direction of increasing y*.

Ry~ 5x 10° only, using both inner normalization and nor-
malization by distance from the surface. In these plots k
denotes the wavenumber, i.e., k = 2nf/U where U repre-
sents an appropriate convection velocity dependent on y.
Due to the scatter in the raw spectra at low wavenumber,
some form of smoothing is necessary in order to ascertain
trends in the results. Therefore, in the present study, raw
premultiplied spectra were smoothed using a least squares
spline approximation of fifth-order. The knot sequence of
the spline was adjusted to minimize the total error, defined
as the sum of the squared difference between the data and
the spline fit, see Dierckx (1993).

The results in Fig. 6 indicate that for y* > 45, distance
from the surface scales the spectra within a wavenumber
band around ky = 1. An inherent feature of scaling with
distance from the surface is that the overall range of scaled
wavenumbers contributing to the variance decreases, i.c.,
the scaled spectra becomes compressed, in some sense,
along the abscissa as y increases. Since the present data
are limited to y* = 2100, the extent to which scaling with
distance from the surface applies for larger y* remains to
be seen.
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Also evident in Fig. 6 is that the spectra at y© =45
exhibits a much narrower region of k! slope, compared
to that observed at y* ~ 15; while, spectra for y* > 130
do not possess a k~! slope at all. This is consistent with
the arguments presented earlier, see (10), that a k' slope
in the spectra of u at any given y* corresponds to a loga-
rithmic Reynolds number dependence in the variance of u
at that same y*. The logarithmic Reynolds number depen-
dence of u’ at " ~ 15, in turn, corroborates the proposed
mixed scaling of #’ in this same region, as described in (1)—
(5). Therefore, the lack of a k' slope in the high Reynolds
number u spectra for y* > 45 is not inconsistent with the
fact that mixed scaling ceases to be valid at this Reynolds
number for y* > 45.

At lower Reynolds numbers, the u spectra typically dis-
plays a k! slope out to much higher y" (Perry and Abell,
1975). In fact, the scaling arguments of (Perry and Abell,
1977) predict a k! slope in the u spectra across the entire
overlap region, i.e., y* > 100 and y/8 < 0.1, which is much
different than the present observation of a k' slope in the
spectra at " ~ 15. One plausible reason for this discrep-
ancy stems from the rms profile (see Fig. 3). At lower Ry,
mixed scaling appears to extend out to a much higher y*,
relative to 07; as Ry increases, the u' profiles peel away
from the mixed scaling line at ever decreasing y*,
approaching the location of the peak near y" = 15. For
example, at the lowest Reynolds number (R, =~ 1500),
mixed scaling appears to be valid out to y* ~ 100, or equiv-
alently y/6 ~ 0.1. At Ry~ 5x 10°, however, mixed scaling
ceases to be valid for y* > 45, which is a substantially smal-
ler fraction of ¢ at this high Reynolds number. Based on
the observed correlation, described herein, between mixed
scaling in the ' profile and the existence of a k™' region
in the spectra, it is not surprising that as R, increases, the
k! region in the u spectra becomes less pronounced, and
even disappears, for y* positions increasing beyond the
peak location in u’.

4.4. Taylor microscales

Previous studies indicate that the Taylor microscale
plays a significant role in scaling turbulent bursting fre-
quencies, event durations, spectra, and statistics (Klewicki
and Falco, 1996; Metzger et al., 2003; Nagano et al., 1998).
Because of the potential relevance toward understanding
momentum and scalar transport across the TBL, decipher-
ing the scaling properties of the Taylor time and length
scales is believed to be important. Toward this end,
the present study considers the variation of the Taylor
microscale (both length and time) as a function of Ry and
y.

The Taylor length scale, 4, represents a characteristic
length associated with the ratio of the dissipation of turbu-
lent kinetic energy, e, and the turbulent kinetic energy,
itself. As such, 4 represents an intermediate scale between
the inner (u./v) and outer () length scales. Assuming iso-
tropic turbulence, see Tennekes and Lumley (1972),

6:15v<(2—;‘)2> ~15v<’$, (11)

where (-) denotes an appropriate time average. Therefore,
the Taylor length scale is estimated from experimental data
using the relation

2 <“2>
g ( (@ufaxy) (12

The present study utilizes Taylor’s frozen turbulence
hypothesis along with a Savitzky—Golay filter to evaluate
the derivative in (12). The Taylor time scale, 4,, is calcu-
lated in a more straightforward manner using an osculating
parabola fit to the autocorrelation of u at zero time lag.
Therefore, calculation of 4, does not rely on the assump-
tion of isotropy. The inner normalized results are plotted
in Fig. 7. Importantly, the high Reynolds number atmo-
spheric data shown were acquired over three different years
with varying hot-wire probe types; yet, all of the results
agree well.
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Fig. 7. Inner normalized Taylor microscale as a function of distance from
the surface and Reynolds number. Taylor time scale (top) and Taylor
length scale (bottom). The open symbols were calculated from the data of
Klewicki (1989). The solid symbols represent data acquired at the
SLTEST site.
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Fig. 8. Classical scaling of the Taylor length scale. Symbols are the same
as that in Fig. 7.

Clearly, inner normalization is not the appropriate scal-
ing measure for the Taylor microscale. Classical scaling
arguments (Tennekes and Lumley, 1972, p. 67), based on
the assumption that energy dissipation equals production,
predict that

”

5~ R (13)

where R; = 1d/v and @ = (u2)"/*. The relation in (13) may
be rewritten as

X~ (0D Pty (14)

Fig. 8 presents the data from Fig. 7 rescaled using the rela-
tion in (14), without the #* factor, which is much smaller
than 6", The data clearly deviate from classical scaling.
Although the assumption of isotropy results in some uncer-
tainty in the calculated values of A, the author believes that
this alone cannot account for the observed discrepancy in
the high and low R, data shown in Fig. 8. Note, the differ-
ence in the values of the scaled 4 is between one and two
orders of magnitude. The sensitivity of the Taylor micro-
scale to the assumption of isotropy clearly requires further
investigation. Additional data is required to fill the Rey-
nolds number gap between the present wind tunnel data
and atmospheric measurements. This, however, is not a
trivial task owing to the large demands on spatiotemporal
resolution of the measurement technique in order to accu-
rately obtain /.

5. Summary

Under nearly ideal conditions, the atmospheric bound-
ary layer at the SLTEST site comes close to mimicking
the flow expected in a very large wind tunnel, and, until
recently, has remained an untapped resource in the study
of fundamental TBL physics. Because no other facility
exists that can generate TBLs with Reynolds numbers as
high as those encountered in the atmosphere, without putt-
ing severe demands on the spatial resolution of current

measurement technology, it seems rational to seek answers
to Reynolds number scaling relations by probing the
atmosphere.

The present study compares atmospheric measurements
of the axial velocity statistics, spectra, and Taylor micro-
scale with corresponding laboratory data to address some
of the open issues in boundary layer scaling. Further sup-
port of mixed scaling of the u' profile near the peak at
y" =15 was provided using independent mean velocity
data from the Superpipe. Mixed scaling was also tied to
the observation that the k! region in the u spectra at
y* a 15 extends further into the low wavenumber regime
at high Ry, indicating that the increase in the peak value
of u’ results from an increased contribution at low wave-
numbers. In addition, the k! region becomes less pro-
nounced at high Ry for y" > 15 and disappears altogether
for y* > 45. This location corresponds roughly to the same
y " location at which mixed scaling ceases to be valid in the
u’ profile. Finally, classical scaling arguments were shown
to be inadequate in removing actual Reynolds number
trends in the Taylor length scale. Further well resolved tur-
bulence measurements at Reynolds numbers based on
momentum thickness in the range 1x10*-1x10° are
needed to corroborate these observations.
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